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Diffraction of relativistic electron waves by a cylindrical 
capacitor 

F Gesztesyt and L Pittner 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 8 February 1979 

Abstract. The diffraction of relativistic electron waves by a cylindrical capacitor is investi- 
gated, starting from the exact general solution of the Dirac equation for an electron in a 
logarithmic potential in two dimensions. Suitable asymptotic approximations to these 
solutions are derived, which allow the convenient insertion of appropriate boundary 
conditions. The partial wave expansion of the scattered electron wave is evaluated by 
means of the Sommerfeld-Watson transformation. The influence of the electrostatic field 
inside the capacitor on various diffraction phenomena is calculated analytically, in particular 
the convergence of Fresnel fringes towards the optical axis with increasing voltage at the 
capacitor. The effect of electron spin-orbit coupling is described explicitly. 

1. Introduction 

The diffraction of electron waves by a cylindrical capacitor permits the observation of 
electron interference fringes without the use of any intermediate crystal (Mollenstedt 
and Duker 1956, Donati et a1 1973, Merli et a1 1976). The capacitor consists of a 
hollow cylinder with radius b and a central wire with radius a, such that the electrostatic 
potential inside the capacitor depends logarithmically on the radius r :  

V ( r )  = E ln(r/b), a s r s b ,  E > O .  (1.1) 
Since this electrostatic field deflects the incident electrons towards the central wire, the 
capacitor serves as an analogue to the Fresnel biprism in classical optics. Due to the 
attraction of electrons towards the wire, the Fresnel fringes converge towards the 
optical axis, so that a large number of these fringes can be observed for sufficiently high 
voltages at the capacitor. 

In the experiments (Mollenstedt and Duker 1956, Donati et a1 1973, Merli.et a1 
1976), the incident electrons are accelerated to kinetic energies of about lo4 eV, so that 
relativistic kinematics should be used. The voltages at the capacitor amount to a few 
eV; thus E << E - m, where E denotes the relativistic energy of incident electrons. 

Within the framework of non-relativistic electron diffraction theory, interference 
phenomena are calculated through the evaluation of the diffraction integral (Glaser 
1952, Komrska 1971), which is constructed from the boundary values of the electron 
wavefunction on the diffraction plane and the Green function of the Schrodinger 
equation. This method does not take into account the circular section of the wire, and 
the influence of the electrostatic field on each single partial wave, in particular the 

t Supported by the Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich, Projekt Nr 3225. 

0305-4470/79/122247 + 08$01.00 @ 1979 The Institute of Physics 2247 



2248 F Gesztesy and L Pittner 

creeping modes, cannot be investigated. Nevertheless, it would be interesting to 
establish the diffraction integral in relativistic electron optics and to evaluate this 
integral in experimental situations. 

In a similar manner to our treatment of the Schrodinger equation for electrons in the 
logarithmic potential defined above (Gesztesy and Pittner 1978a), the exact general 
solution of the Dirac equation for electrons in this potential may be expanded into 
partial waves, each of which can be represented by a uniformly convergent perturbation 
expansion (Gesztesy and Pittner 1978b). For sufficiently weak electric voltages at the 
capacitor, dominant terms of this series may be summed up to a JwKB-type solution, 
which satisfies the corresponding radial Dirac equation approximately inside the 
capacitor (a s r s b) ,  and in particular exhibits the expected asymptotic behaviour near 
the origin (r -+ 0) (Gesztesy and Pittner 1978b, Coppel 1965). 

Inserting boundary conditions which describe the impenetrable wire and the electric 
field cut-off at the hollow cylinder, one obtains the partial wave expansion of the 
diffracted relativistic electron wave propagating towards the screen. 

In a similar manner to our calculation of high-frequency scattering of spinless 
non-relativistic electrons (Gesztesy and Pittner 1979), the scattered electron wave can 
be evaluated explicitly by means of the Sommerfeld-Watson transformation. Roughly 
stated, our results may be obtained from the corresponding expressions for diffraction 
by an impenetrable cylinder of radius a by means of an analytic continuation in the 
scattering angle 4, 

4 + 4  + i  ln[I(E2-m2)/{[E-E ln(a/b)I2-m2)]. (1.2) 

The changes in the diffraction phenomena with an increasing electric voltage at the 
capacitor, and in particular the convergence of the Fresnel fringes towards the optical 
axis, will be calculated explicitly. The effects of relativistic kinematics and electron spin 
are discussed in comparison with our non-relativistic treatment for spinless particles 
(Gesztesy and Pittner 1979). 

2. Exact solution 

The formal matrix differential operator 

T = a. V/i+@m + V(r), (2.1) 

with the usual Dirac matrices a, p (for our notation see Bjorken and Drell 1964) and 
the logarithmic potential V defined in the Introduction, may be written in terms of 
cylindrical coordinates r, 4, x3 as 

T = a + ~ - + a - ~ + + a ~ ( a / i a x ~ ) + p m +  V(r), (2.2) 

JZa* = a * i a2 ,  JZD, = a/i ax1 * a/ax2 = e*id(a/i ar * aIra4).  

On the Dirac spinors 

I=O,*1,*2 , . . .  (2.3) 
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the formal matrix differential operators representing the projections of total angular 
momentum and spin perpendicular to the scattering plane ( x 3  = 0) act in the following 
way: 

3 (*) J Vl (r, 4) =i3V!*)(r ,  #), 

P a  J Vl (r, #)= *i W I  (r, #), 
j 3 = E + ’ -  *1 *3 *I J 3  = a/i a# +$a3, 2 -  21 2, 2, * * * .  

(2.4) 3 3 (*) 3 (*) 

The formal energy eigenvalue equation 

then decomposes into the radial equations 

d G ? ) ( r ) / d r  = W ? ’ ( r ) G ? ) ( r ) ,  

w?) ( r )  = * ( i 3 / r  
E - m - V ( r )  - j 3 / r  

These radial equations may be transformed to the regular differential equations 

dYy’(x)/dx = (C?’ +B(*)(x))Yi*’(x), 

(2.7) 

in which x = ln(r/b), p = be, A = b(E + m), p = b(E  - m), and the solutions of which are 
all entire functions of x .  The general solutions of these two systems of linear differential 
equations can be expanded in terms of exponential polynomials, 

with polynomials p‘,f:  and q‘nf: determined by rather complicated recursion formulae 
(Gesztesy and Pittner 1978b); with respect to x ,  these series converge uniformly on each 
compact subset of the complex plane and uniformly on the negative real line, which is of 
interest because x + -m means r + 0. 

3. Approximation by Bessel functions 

Aiming at the insertion of suitable boundary conditions, we now try to single out and 
sum the dominant terms of the expansions (2.8). In analogy to our non-relativistic 
treatment (Gesztesy and Pittner 1979), for eb << p / E  with p = (E2 - rn2)1’2, estimates 
for the coefficients of the polynomials p F /  and qE/ (inequalities (4.14) and (4.15) in 
Gesztesy and Pittner (1978b)) allow us to take as an asymptotic approximation, in the 
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interval ln(a/b) s x d 0, the highest powers in [(A - p x ) ( ~  - px)I1/’ of these poly- 
nomials. Then one obtains the following JwKB-type solutions: 

F Gesztesy and L Pittner 

(3.1) 

in which t = sex, s = [(A - &)(F - px)]”’, with arbitrary complex numbers C Y )  and d?) .  
These approximations to the exact general solutions of the matrix differential 

equations (2.7) behave asymptotically for x + -a in the expected manner (Gesztesy 
and Pittner 1978b). Careful insertion of the functions (3.1) into the equations (2.7) 
shows that they fulfil these equations asymptotically for ln(a/b) s x d 0 and EE << 
E’- m’, or equivalently for a d r d b and E c E - m. 

Rewritten in terms of cylindrical coordinates, these partial waves may be summed 
up to the general asymptotic solution 

(3.2) 
in which k ( r )  = [(E - V(r))’-  m’]”’, a d r d b, with arbitrary complex numbers cy )  and 
dji ) ,  i = 1, . . . , 4 .  This asymptotic solution differs from the exact general solution of the 
Dirac equation for free electrons by the radial dependence of the relativistic momentum 
k ( r ) .  

4. Boundary conditions 

The incident electrons are described by the plane wave 

@(r, 4) = U exp(ip cos 4), (4.1) 
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t t 
P = pr, w = ( ; ) ,  

U U = w w = )c(2+ld12 = 1. 

The scattered electron wave is expanded in the usual manner, 
m 

x(r ,  4) = 1 ilS&lil)(p) cos(@) - r-”’ eiPA(4), (4.2) 
I-0 r-boo 

with A(4 )  the scattering amplitude. 
The diffraction of electron waves by an impenetrable wire of radius a under the 

influence of an electrostatic field in the region a s r s b  is then described by the 
insertion of our general solution into the boundary conditions 

*(a, 4) = 0, ( * -@-x ) (b ,  4) = 0, ( W W * - @ - x N r ,  4 ) l r - a  = 0. (4.3) 

The resulting expressions for the scattering coefficients SI are rather complicated, but 
for E << E - m they may be approximated by 

so = -uJl)(a)/Hb’) (a), 

where 

U =  [q 
d 4 ) v  

and 

s, = -2uv%(a)/HI”(a), l = l , 2 , 3  ,..., (4.4) 

a = u [ ( E -  ~ ( a ) ) ~ - m ~ ] ’ / ~ ,  

where 

v = (E2-mZ)/[(E- ~ ( a ) ) ~ - m ~ ] .  

This approximate result for the relativistic scattered electron wave can be obtained 
from the corresponding spinless non-relativistic expressions (equations (4.6) and (4.7) 
in Gesztesy and Pittner (1979)) by the use of relativistic kinematics in the expressions 
for a and v, and the insertion of the Dirac spinor U. The second and fourth components 
of this spinor U contain a factor v which describes the relativistic electron spin-orbit 
coupling in an electrostatic field. The resulting spin effect, which will be evaluated in the 
next section, is very small in the range of validity of our asymptotic approximation by 
means of Bessel functions, because 1 - v << 1 for E << E - m. 

As in the spinless non-relativistic case, the factors v’ in the partial wave expansion of 
the scattered wave are decisive for an explicit calculation of the changes of various 
diffraction phenomena with increasing electric voltage at the capacitor, because only 
the partial waves with 1 a >> 1 give rise to electron interference. 

5. Fresnel pattern 

For an explicit evaluation of the outgoing electron wave and the interference 
phenomena on the screen due to diffraction by the cylindrical capacitor, we may 
perform the Sommerfeld-Watson transformation and shift the path of integration in the 
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complex angular momentum plane, in analogy to the spinless non-relativistic case. The 
two discontinuities along the positive imaginary axis (equations (5.10) and (5.13) in 
Gesztesy and Pittner (1979)), the residue series, the path integrals in the lit region, the 
Fresnel region and the Fraunhofer region may be treated in the same way as in our 
previous work (Gesztesy and Pittner 1979). 

As an example which exhibits the influence of an external electrostatic field on the 
diffraction of charged matter waves, and in particular the effects of relativistic kinema- 
tics and spin, we present here our relativistic result for the convergence of Fresnel 
fringes towards the optical axis with increasing electric field strength. The wavefunction 
of outgoing electrons in the region a << p << a4j3 near the shadow boundary, i.e. 
14 -U/ 6 C X - ~ ' ~ ,  U = sin-'(a/p), can be approximated by 

9 ( r ,  4 )  = U exp(ip cos 4) - v exp[ip cos(4 -is)] 
exp[ip cos(9 -iS)](F(+m) -F(To)) ,  (5.1) +v2-l/2 e-iw/4 

where 

s = Iln V I ,  ~ ~ = p ( u - ~ $ + i s ) ~  (p  - - I )  , 

with the Fresnel integral 

t = p sin(q3 -is) ,  -1/2 2 2 -1/4 

F ( z )  = I * d[ exp (i 4'') (z complex), F ( + ~ )  = 2-112 ei77/4 9 

0 

in analogy to our non-relativistic results (Gesztesy and Pittner 1979). 

1972), the maxima of 19( r ,  +)I tend towards the axis according to the law 
Due to well-known properties of the Fresnel integral (Abramowitz and Stegun 

(5.3) 2 dcentre = U -  6 /U, 

where dcentre denotes the scattering angle which belongs to the centre of the Fresnel 
pattern, i.e. dcentre = U for E = 0. The Fresnel fringes reach the optical axis as soon as 
U = S, i.e. 

u / r  = [ ~ E / ( E ~ -  m2)]e In(b/a). (5.4) 

According to this relation, the Fresnel zones reach the axis approximately at the point 
where the classical trajectory of an electron with energy E and angular momentum 
1 = up crosses the axis. 

These results differ from the corresponding non-relativistic expressions only by the 
use of relativistic kinematics. For an explicit evaluation of the effect of relativistic 
electron spin-orbit coupling we define helicity states 

with the usual Pauli spin matrix U' and /pI = p', p2 = p 3  = 0. We denote by U+ and v+  
the corresponding Dirac spinors, where the Pauli spinors W* are inserted for w in the 
definition (4.1). Then by means of the spin flip matrix 

(5 .6)  
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the probability for an electron spin flip in the electrostatic potential V ( r )  amounts to 

According to these matrix elements, the electron spin is not flipped during diffraction by 
an impenetrable cylinder without any external electromagnetic field. 

The polarisation of electrons by an electrostatic field inside the capacitor may be 
calculated in the following way. Starting with unpolarised incident electrons, namely 
with the Pauli spinor 

inserted for w in the definition (4.1), and the corresponding Dirac spinors G and B 
respectively, we obtain the final helicity mean value 

3l” 2Ee 
B+B 2 

which indicates a small polarisation of the order € / ( E  - m ) .  
Looking at the scalar product 

(5.9) 

(5.10) 

we see that the intensity loss of the scattered electron wave, which is described by the 
factor v a  in the approximate result (5.1), is slightly enhanced by the electron spin-orbit 
coupling. 

6. Conclusions 

For the sake of simplicity, as in our previous work on the diffraction of non-relativistic 
electrons without spin (Gesztesy and Pittner 1979), we have represented the elec- 
trostatic biprism by a cylindrical capacitor and the incident electrons by a plane wave, so 
that the influence of an external electrostatic field on the diffraction of relativistic 
electron waves can be evaluated analytically. The effect of electron spin was shown to 
be small, of the order € / ( E  - m ) .  

The diffraction of an incident cylindrical wave by a cylindrical capacitor, since it is 
emitted from a linear electron source in the actual experiments (Mollenstedt and Duker 
1956, Donati e ta l  1973, Merli etal 1976), can presumably be treated only with the aid 
of numerical methods. For this purpose one should also modify the boundary conditions 
appropriately in order to describe the electrostatic field cut-off as realised experiment- 
ally. 
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